Estimation of π₀
Methods
Distributions.estimate
— Functionestimate(PValues, <:Pi0Estimator)
Estimate π₀, the fraction of tests under the null hypothesis
Examples
julia> pvals = PValues([0.001, 0.002, 0.01, 0.03, 0.5]);
julia> estimate(pvals, StoreyBootstrap())
0.0
julia> estimate(pvals, FlatGrenander())
0.42553191489361697
See also
Pi0Estimator
s:
Storey
StoreyBootstrap
LeastSlope
Oracle
TwoStep
RightBoundary
CensoredBUM
BUM
FlatGrenander
ConvexDecreasing
Types
MultipleTesting.Storey
— TypeStorey's π₀ estimator
Examples
julia> pvals = PValues([0.001, 0.002, 0.01, 0.03, 0.5]);
julia> estimate(pvals, Storey())
0.22222222222222224
julia> estimate(pvals, Storey(0.4))
0.33333333333333337
References
Storey, J.D., Taylor, J.E., and Siegmund, D. (2004). Strong control, conservative point estimation and simultaneous conservative consistency of false discovery rates: a unified approach. Journal of the Royal Statistical Society: Series B (Statistical Methodology) 66, 187–205.
MultipleTesting.StoreyBootstrap
— TypeStorey's closed-form bootstrap π₀ estimator
Examples
julia> pvals = PValues([0.001, 0.002, 0.01, 0.03, 0.5]);
julia> estimate(pvals, StoreyBootstrap())
0.0
julia> estimate(pvals, StoreyBootstrap(0.1:0.1:0.9, 0.2))
0.0
References
Robinson, D. (2016). Original Procedure for Choosing λ. http://varianceexplained.org/files/pi0boot.pdf
Storey, J.D., Taylor, J.E., and Siegmund, D. (2004). Strong control, conservative point estimation and simultaneous conservative consistency of false discovery rates: a unified approach. Journal of the Royal Statistical Society: Series B (Statistical Methodology) 66, 187–205.
MultipleTesting.LeastSlope
— TypeLeast Slope (LSL) π₀ estimator
Examples
julia> pvals = PValues([0.001, 0.002, 0.01, 0.03, 0.5]);
julia> estimate(pvals, LeastSlope())
1.0
References
Benjamini, Y., and Hochberg, Y. (2000). On the Adaptive Control of the False Discovery Rate in Multiple Testing With Independent Statistics. Journal of Educational and Behavioral Statistics 25, 60–83.
MultipleTesting.Oracle
— TypeOracle π₀
Examples
julia> pvals = PValues([0.001, 0.002, 0.01, 0.03, 0.5]);
julia> estimate(pvals, Oracle(0.5)) # a bit boring...
0.5
MultipleTesting.TwoStep
— TypeTwo-step π₀ estimator
Examples
julia> pvals = PValues([0.001, 0.002, 0.01, 0.03, 0.5]);
julia> estimate(pvals, TwoStep())
0.2
julia> estimate(pvals, TwoStep(0.05, BenjaminiLiu()))
0.2
References
Benjamini, Y., Krieger, A.M., and Yekutieli, D. (2006). Adaptive linear step-up procedures that control the false discovery rate. Biometrika 93, 491–507.
MultipleTesting.RightBoundary
— TypeRight boundary π₀ estimator
Examples
julia> pvals = PValues([0.001, 0.002, 0.01, 0.03, 0.5]);
julia> estimate(pvals, RightBoundary())
0.2127659574468085
julia> estimate(pvals, RightBoundary(0.1:0.1:0.9))
0.25
References
Liang, K., and Nettleton, D. (2012). Adaptive and dynamic adaptive procedures for false discovery rate control and estimation. Journal of the Royal Statistical Society: Series B (Statistical Methodology) 74, 163–182.
MultipleTesting.CensoredBUM
— TypeCensored Beta-Uniform Mixture (censored BUM) π₀ estimator
Examples
julia> pvals = PValues([0.001, 0.002, 0.01, 0.03, 0.5]);
julia> estimate(pvals, CensoredBUM())
0.21052495526400936
References
Markitsis, A., and Lai, Y. (2010). A censored beta mixture model for the estimation of the proportion of non-differentially expressed genes. Bioinformatics 26, 640–646.
MultipleTesting.BUM
— TypeBeta-Uniform Mixture (BUM) π₀ estimator
Examples
julia> pvals = PValues([0.001, 0.002, 0.01, 0.03, 0.5]);
julia> estimate(pvals, BUM())
0.22802795505154264
References
Pounds, S., and Morris, S.W. (2003). Estimating the occurrence of false positives and false negatives in microarray studies by approximating and partitioning the empirical distribution of p-values. Bioinformatics 19, 1236–1242.
MultipleTesting.FlatGrenander
— TypeFlat Grenander π₀ estimator
Estimates π₀ by finding the longest constant interval in the Grenander estimator.
Examples
julia> pvals = PValues([0.001, 0.002, 0.01, 0.03, 0.5]);
julia> estimate(pvals, FlatGrenander())
0.42553191489361697
References
Langaas, M., Lindqvist, B.H., and Ferkingstad, E. (2005). Estimating the proportion of true null hypotheses, with application to DNA microarray data. Journal of the Royal Statistical Society: Series B (Statistical Methodology) 67, 555–572.
MultipleTesting.ConvexDecreasing
— TypeConvex Decreasing π₀ estimator
Examples
julia> pvals = PValues([0.001, 0.002, 0.01, 0.03, 0.5]);
julia> estimate(pvals, ConvexDecreasing())
0.013007051336745304
References
Langaas, M., Lindqvist, B.H., and Ferkingstad, E. (2005). Estimating the proportion of true null hypotheses, with application to DNA microarray data. Journal of the Royal Statistical Society: Series B (Statistical Methodology) 67, 555–572.