Modelling of p-Value Distributions
MultipleTesting.BetaUniformMixtureModel
— FunctionBeta Uniform Mixture (BUM) Model
Arguments
- π0 : Contributing fraction of the uniform distribution to the full model
- α, β : Parameters of the Beta distribution, Float64, default: 0.5, 3.0
Return values
MixtureModel
, as defined in the Distributions
package, composed of
- a uniform distribution in the interval [0, 1], with weight/prior π₀
- a Beta distribution with parameters α and β, with weight/prior 1-π₀
Examples
julia> bum = BetaUniformMixtureModel(0.2, 0.5, 1.0);
julia> using Distributions
julia> pdf.(bum, 0.2:0.2:1.0)
5-element Array{Float64,1}:
1.094427190999916
0.832455532033676
0.7163977794943224
0.647213595499958
0.6000000000000001
References
Pounds, S., and Morris, S.W. (2003). Estimating the occurrence of false positives and false negatives in microarray studies by approximating and partitioning the empirical distribution of p-values. Bioinformatics 19, 1236–1242.