Adjustment of p-Values
Methods
MultipleTesting.adjust
— Functionadjust(PValues, <:PValueAdjustment)
adjust(PValues, Int, <:PValueAdjustment)
Adjustment of p-values
Examples
julia> pvals = PValues([0.001, 0.01, 0.03, 0.5]);
julia> adjust(pvals, BenjaminiHochberg())
4-element Array{Float64,1}:
0.004
0.02
0.039999999999999994
0.5
julia> adjust(pvals, 6, BenjaminiHochberg()) # 4 out of 6 p-values
4-element Array{Float64,1}:
0.006
0.03
0.06
0.75
julia> adjust(pvals, BarberCandes())
4-element Array{Float64,1}:
0.3333333333333333
0.3333333333333333
0.3333333333333333
1.0
See also
PValueAdjustment
s:
Bonferroni
BenjaminiHochberg
BenjaminiHochbergAdaptive
BenjaminiYekutieli
BenjaminiLiu
Hochberg
Holm
Hommel
Sidak
ForwardStop
BarberCandes
Types
MultipleTesting.Bonferroni
— TypeBonferroni adjustment
Examples
julia> pvals = PValues([0.001, 0.01, 0.03, 0.5]);
julia> adjust(pvals, Bonferroni())
4-element Array{Float64,1}:
0.004
0.04
0.12
1.0
julia> adjust(pvals, 6, Bonferroni())
4-element Array{Float64,1}:
0.006
0.06
0.18
1.0
References
Bonferroni, C.E. (1936). Teoria statistica delle classi e calcolo delle probabilita (Libreria internazionale Seeber).
MultipleTesting.BenjaminiHochberg
— TypeBenjamini-Hochberg adjustment
Examples
julia> pvals = PValues([0.001, 0.01, 0.03, 0.5]);
julia> adjust(pvals, BenjaminiHochberg())
4-element Array{Float64,1}:
0.004
0.02
0.039999999999999994
0.5
julia> adjust(pvals, 6, BenjaminiHochberg())
4-element Array{Float64,1}:
0.006
0.03
0.06
0.75
References
Benjamini, Y., and Hochberg, Y. (1995). Controlling the False Discovery Rate: A Practical and Powerful Approach to Multiple Testing. Journal of the Royal Statistical Society. Series B (Methodological) 57, 289–300.
MultipleTesting.BenjaminiHochbergAdaptive
— TypeAdaptive Benjamini-Hochberg adjustment
Examples
julia> pvals = PValues([0.001, 0.01, 0.03, 0.5]);
julia> adjust(pvals, BenjaminiHochbergAdaptive(Oracle(0.5))) # known π₀ of 0.5
4-element Array{Float64,1}:
0.002
0.01
0.019999999999999997
0.25
julia> adjust(pvals, BenjaminiHochbergAdaptive(StoreyBootstrap())) # π₀ estimator
4-element Array{Float64,1}:
0.0
0.0
0.0
0.0
julia> adjust(pvals, 6, BenjaminiHochbergAdaptive(StoreyBootstrap()))
4-element Array{Float64,1}:
0.0
0.0
0.0
0.0
References
Benjamini, Y., Krieger, A. M. & Yekutieli, D. (2006). Adaptive linear step-up procedures that control the false discovery rate. Biometrika 93, 491–507.
MultipleTesting.BenjaminiYekutieli
— TypeBenjamini-Yekutieli adjustment
Examples
julia> pvals = PValues([0.001, 0.01, 0.03, 0.5]);
julia> adjust(pvals, BenjaminiYekutieli())
4-element Array{Float64,1}:
0.00833333333333334
0.0416666666666667
0.0833333333333334
1.0
julia> adjust(pvals, 6, BenjaminiYekutieli())
4-element Array{Float64,1}:
0.01470000000000001
0.07350000000000005
0.14700000000000008
1.0
References
Benjamini, Y., and Yekutieli, D. (2001). The Control of the False Discovery Rate in Multiple Testing under Dependency. The Annals of Statistics 29, 1165–1188.
MultipleTesting.BenjaminiLiu
— TypeBenjamini-Liu adjustment
Examples
julia> pvals = PValues([0.001, 0.01, 0.03, 0.5]);
julia> adjust(pvals, BenjaminiLiu())
4-element Array{Float64,1}:
0.003994003998999962
0.022275750000000066
0.02955000000000002
0.125
julia> adjust(pvals, 6, BenjaminiLiu())
4-element Array{Float64,1}:
0.0059850199850060015
0.04084162508333341
0.07647146000000005
0.4375
References
Benjamini, Y., and Liu, W. (1999). A step-down multiple hypotheses testing procedure that controls the false discovery rate under independence. Journal of Statistical Planning and Inference 82, 163–170.
MultipleTesting.Hochberg
— TypeHochberg adjustment
Examples
julia> pvals = PValues([0.001, 0.01, 0.03, 0.5]);
julia> adjust(pvals, Hochberg())
4-element Array{Float64,1}:
0.004
0.03
0.06
0.5
julia> adjust(pvals, 6, Hochberg())
4-element Array{Float64,1}:
0.006
0.05
0.12
1.0
References
Hochberg, Y. (1988). A sharper Bonferroni procedure for multiple tests of significance. Biometrika 75, 800–802.
MultipleTesting.Holm
— TypeHolm adjustment
Examples
julia> pvals = PValues([0.001, 0.01, 0.03, 0.5]);
julia> adjust(pvals, Holm())
4-element Array{Float64,1}:
0.004
0.03
0.06
0.5
julia> adjust(pvals, 6, Holm())
4-element Array{Float64,1}:
0.006
0.05
0.12
1.0
References
Holm, S. (1979). A Simple Sequentially Rejective Multiple Test Procedure. Scandinavian Journal of Statistics 6, 65–70.
MultipleTesting.Hommel
— TypeHommel adjustment
Examples
julia> pvals = PValues([0.001, 0.01, 0.03, 0.5]);
julia> adjust(pvals, Hommel())
4-element Array{Float64,1}:
0.004
0.03
0.06
0.5
julia> adjust(pvals, 6, Hommel())
4-element Array{Float64,1}:
0.006
0.05
0.12
1.0
References
Hommel, G. (1988). A stagewise rejective multiple test procedure based on a modified Bonferroni test. Biometrika 75, 383–386.
MultipleTesting.Sidak
— TypeŠidák adjustment
Examples
julia> pvals = PValues([0.001, 0.01, 0.03, 0.5]);
julia> adjust(pvals, Sidak())
4-element Array{Float64,1}:
0.003994003998999962
0.039403990000000055
0.11470719000000007
0.9375
julia> adjust(pvals, 6, Sidak())
4-element Array{Float64,1}:
0.0059850199850060015
0.058519850599
0.1670279950710002
0.984375
References
Šidák, Z. (1967). Rectangular Confidence Regions for the Means of Multivariate Normal Distributions. Journal of the American Statistical Association 62, 626–633.
MultipleTesting.ForwardStop
— TypeForward-Stop adjustment
Examples
julia> pvals = PValues([0.001, 0.01, 0.03, 0.5]);
julia> adjust(pvals, ForwardStop())
4-element Array{Float64,1}:
0.0010005003335835344
0.005525418093542492
0.013836681223931188
0.1836643060579347
julia> adjust(pvals, 6, ForwardStop())
4-element Array{Float64,1}:
0.0010005003335835344
0.005525418093542492
0.013836681223931188
0.1836643060579347
References
G’Sell, M.G., Wager, S., Chouldechova, A., and Tibshirani, R. (2016). Sequential selection procedures and false discovery rate control. J. R. Stat. Soc. B 78, 423–444.
MultipleTesting.BarberCandes
— TypeBarber-Candès adjustment
Examples
julia> pvals = PValues([0.001, 0.01, 0.03, 0.5]);
julia> adjust(pvals, BarberCandes())
4-element Array{Float64,1}:
0.3333333333333333
0.3333333333333333
0.3333333333333333
1.0
References
Barber, R.F., and Candès, E.J. (2015). Controlling the false discovery rate via knockoffs. Ann. Statist. 43, 2055–2085.
Arias-Castro, E., and Chen, S. (2017). Distribution-free multiple testing. Electron. J. Statist. 11, 1983–2001.