MultipleTesting.jl
The MultipleTesting
package offers common algorithms for p-value adjustment and combination as well as the estimation of the proportion π₀ of true null hypotheses.
Features
Adjustment of p-values
- Bonferroni
- Benjamini-Hochberg
- Adaptive Benjamini-Hochberg with known π₀ or π₀ estimation method (see section below)
- Benjamini-Yekutieli
- Benjamini-Liu
- Hochberg
- Holm
- Hommel
- Sidak
- Forward Stop
- Barber-Candès
adjust(pvals, Bonferroni())
adjust(pvals, BenjaminiHochberg())
adjust(pvals, BenjaminiHochbergAdaptive(0.9))
adjust(pvals, BenjaminiHochbergAdaptive(Storey()))
adjust(pvals, BenjaminiYekutieli())
adjust(pvals, BenjaminiLiu())
adjust(pvals, Hochberg())
adjust(pvals, Holm())
adjust(pvals, Hommel())
adjust(pvals, Sidak())
adjust(pvals, ForwardStop())
adjust(pvals, BarberCandes())
The adjustment can also be performed on the k
smallest out of n
p-values:
adjust(pvals, n, PValueAdjustmentMethod)
Estimation of π₀
- Storey
- Storey's Closed-Form Bootstrap
- Least Slope
- Two Step
- Right Boundary (Storey's estimate with dynamically chosen λ)
- Beta-Uniform Mixture (BUM)
- Censored BUM
- Flat Grenander
- Oracle for known π₀
estimate(pvals, Storey())
estimate(pvals, StoreyBootstrap())
estimate(pvals, LeastSlope())
estimate(pvals, TwoStep())
estimate(pvals, TwoStep(0.05))
estimate(pvals, TwoStep(0.05, BenjaminiHochbergAdaptive(0.9))
estimate(pvals, RightBoundary())
estimate(pvals, CensoredBUM())
estimate(pvals, BUM())
estimate(pvals, FlatGrenander())
estimate(pvals, Oracle(0.9))
Combination of p-values
- Fisher
- Stouffer, optionally with weights
- Logit
- Tippett
- Simes
- Wilkinson
- Minimum of adjusted p-values
combine(pvals, Fisher())
combine(pvals, Stouffer())
combine(pvals, weights, Stouffer())
combine(pvals, Logit())
combine(pvals, Tippett())
combine(pvals, Simes())
combine(pvals, Wilkinson(rank))
combine(pvals, Minimum(PValueAdjustment()))
Higher Criticism
- Higher Criticism scores
- Higher Criticism threshold
estimate(pvals, HigherCriticismScores())
estimate(pvals, HigherCriticismThreshold())